7 Mar
2017

 Artificial Sweeteners-the Good and Bad

There are a number of artificial sweeteners on the grocery shelves these days, all created to provide a sugar free alternative for those that have blood sugar imbalances or wish to decrease their sugar intake.  Some are better choices than other based on how they are made and what potential negative effects they may have on your health.  For clarity, I have provided some information on each sweetener below.

A couple basic concepts to keep in mind pertaining to artificial sweeteners:

  1. Remember when discussing chemical reactions that when two or more chemicals combine to make a new chemical, there will always be remainders of the initial components left over.  So even though a product may be made mostly of the final product, there will always be remainders of what comprised it.
  2. Chemicals are chemicals, period.  They increase the toxic load on your body and use up energy for detoxification.
  3. Thorough studies were not completed to determine the safety or outcome with prolonged use of many chemical sweeteners before allowing them onto the food market.

Aspartame

Check food labels

Aspartame is made chemically from the amino acids aspartic acid and phenylalanine.  There is a fair quantity of information about the potential negative side effects that aspartame may have on our health.  Much of this concern revolves around what it is made from and  chemicals are created in our digestive systems when aspartame is digested.

Consumption of aspartic acid increases blood levels of aspartate.  Aspartate can cross the blood-brain barrier, and excess levels cause nerve cell death by exciting the cells to the point where they die.  This also occurs with the consumption of monosodium glutamate, also known as MSG.  Children, pregnant women and individuals with existing brain disorders are highly encouraged to avoid products containing these products.  Russell Blaylock, M.D. published a book called Excitotoxins: The Taste That Kills that has been very helpful in my understanding of this process.  It clearly outlines the effects that these excitotoxins have on our nervous system and how best to avoid them.  I highly recommend this book!  A general rule of thumb is to avoid any food that obviously states either aspartame or MSG and avoid using packaged foods.

Phenylalanine is normally found in the brain, but with the consumption of aspartame the levels can rise to those that are dangerous.  Increased consumption of phenylalanine can decrease serotonin levels in the brain, leading to depression.  Blaylock also addresses this in his book, pointing out that high levels of phenylalanine can cause schizophrenia and make one more susceptible to seizures.  In order for phenylalanine to be used in the production of aspartame, it must be treated with methanol and hydrochloric acid.  While most of the methanol is likely removed from the phenylalanine, small amounts remaining will likely contribute to the methanol toxicity from consuming aspartame, discussed below.

Two of the final by-products of the digestion of aspartame are formic acid and formaldehyde.  Formic acid is highly acidic and, according to MSDS, is listed as a corrosive and an irritant, and is known to be corrosive on the skin.  It is used commercially as a preservative and antibacterial agent in livestock feed, and it slows the decay of said products.

I think that many of us are familiar with formaldehyde as an effective preservative, and was once used to preserve cadavers before its severe toxicity was discovered.  What many may not know is that is it a product of the break down of methanol.  Methanol is released from aspartame during the digestive process in the small intestine.  Free methanol is the most easily absorbed by the body, and is created when aspartame is heated to over 86 degrees.  Consider food products like microwaved sugar free foods or foods that require heat for preparation. Methanol toxicity most commonly exhibits with visual disturbances like blurry vision, decrease in visual fields, retinal damage and blindness.

Formaldehyde is also used in the manufacturing of glues and bonding agents.  This is part of the familiar “new house” smell that emanates from cabinets, composite counter-tops, pressed bookshelves and other similar items.  Formaldehyde is a known carcinogen, causes damage to the retina, leads to birth defects and interfered with normal DNA replication.

You will recognize NutraSweet and Equal as two of the most well-known names of aspartame products.  And you may be thinking ” I don’t consume that much aspartame so it can’t be that bad!”.  If you were to stop and consider the sweetened drinks you consume, the gum you chew, the frozen or packaged meals you eat and candy you buy you might want to re-consider.  If you intentionally seek out sugar free foods, unless you are intentionally avoiding aspartame you are probably eating more than you think.

Acesulfame Potassium (Ace K)

Created in 1988, it was not officially used as a food product until 1998 in soft drinks.  Initial research indicated that Ace K moved through the body without being metabolized, so it was deemed safe for consumption.  This information, however, was based on very few studies so the possibility of health concerns was not ruled out.

Ace K is made by combining acetoacetic acid and fluorosulfonyl isocyanate to create an unstable compound that is then reacted with potassium hydride under heat to crystallize it to a powdery sweetener.  Methylene chloride is a solvent used in the initial steps to create Ace K.  Per concept #1 at the start of this blog, even though these chemicals are reacted together to form Ace K, there will still be remaining amounts of acetoacetic acid, fluorosulfonyl isocyanate and methylene chloride in the final product.

Isocyanates are powerful irritants to the mucus membranes of the body, including the repiratory system, gastrointestinal system and eyes.  Most isocyanates are used in vapor form and are thereby inhaled and swallowed.  Methylene chloride is classified as a potential carcinogen by OSHA.  Skin exposure causes irritation and burns, and continuous exposure causes respiratory tract and eye irritation.

Ace-K is used in combination with other artificial sweeteners due to its intense sweet taste and bitter aftertaste.  It is most commonly used with aspartame.

A research study using mice was completed in 2013 that may indicate other potential effects of Ace-K that were previously unknown.  The study quantified ingestion levels for mice that were realistically comparable with ingestion levels of humans based on weight.  The outcomes showed that consistent ingestion altered fasting levels of insulin and increased leptin levels which correlated with increased total cholesterol levels, LDL and HDL levels.  It was also discovered that Ace-K consumption decreased the mitochondrial activity of nerve cells (decreasing the energy production capacity of the cell), compromising the ability of the cell to function properly.  Impaired cognitive function was reflected in decreased function of short-term memory [1].

You will recognize sweeteners that contain Ace-K by the names Sunnett or Sweet One.  I would include this with aspartame as a sweetener to avoid.

Neotame

Neotame is produced by combining aspartame with 3-dimethylbutyl.  The result is that it retains a 3, 3-dimethylbutyl group that prevents the complete breakdown of the sweetener.  This reduces the amount of phenylalanine produced, making it “safe” for those with PKU.

It has a sweetness factor that is over 7,000 times that of table sugar!  So it requires much less to achieve the same sweetness.  So little that you are probably consuming it without realizing it.  Because labeling laws do not require that an ingrediFront page of 'Methanol Poisoning'ent be labeled if it is 1% or less of the ingredients, it is added and not labeled but is combined with other artificial sweeteners.

While this sounds wonderful, the reality is that, because it is a derivative of aspartame it is metabolized to the same end-products, namely phenylalanine and methanol.  I explained under the aspartame section how methanol is broken down to formaldehyde, and the dangers of phenylalanine.  The same apply here.

I attempted to locate and retrieve research studies on the safety of neotame and was unable to find any, which leads me to believe that the true safety of this product has not bee studied.  Again, beware of what you eat.  Because of the likelihood that it is not on the label and is combined with other artificial sweeteners, you are likely consuming it and do not realize it.

Saccharin

Saccharin is made from sugar so it tastes more like sugar, but by the end of processing sugar to make it, it retains none of the chemical characteristics of sugar.  During its making, sucrose is chlorinated to leave a chemical with three chlorine molecules attached.  Yes, similar to the chlorine that goes into your swimming pool.  This yields a compound called an alkyl halide, which the body has great difficulty detoxifying.  This puts it in the same category of DDT…comforting, right?

Saccharin was approved for food use in 1998 under the pretense that it was not metabolized during digestion and studies showed no carcinogenic effects.  However, like all other chemical sweeteners, long-term studies were not conducted before release of the product onto the market so the outcomes were really not clearly or carefully investigated.

Research studies since then have shown that saccharin is likely more toxic that originally thought.  According to the Sucralose Toxicity Information Center, the absorbed sucralose and its metabolites concentrate in the liver, kidney, and gastrointestinal tract. While Splenda manufacturers claim that there is minimal absorption after ingestion, the FDA says there is only 11 percent to 27 percent absorption and the Japanese Food Sanitation Council dictates as much as 40 percent.

A rat study conducted in 2013 by Susan Schiffman and Kristina Rother determined several things that were not yet understood:

  • The consumption of sucralose initiated the pre-systemic detoxification systems to prepare the body to detox the chemical, indicating that the body sees sucralose as something toxic.
  • It was also found that some of the sucralose is metabolized in the gut and the metabolites created are mutagenic at elevated concentration (meaning they have the potential to cause cancer).
  • Sucralose in the large bowel was seen to decrease the level of beneficial gut bacteria.
  • Cooking sucralose at high temperatures created choloropropanols, that have been shown to be carcinogenic, genotoxic (damage DNA), and contribute to male infertility.
  • Sucralose may alter glucose and insulin levels. [2]

While some may question if the outcomes of the study pertain to humans because rats were the test subjects, it was shown that sucralose in indeed not an inert compound as previously believed and may have more serious health effects than we thought.

While it may seem small, one study carried out in 1994 indicates that there may be individuals within the population that are more sensitive to the toxic nature of sucralose than others.  One patient experienced hepatotoxicity (liver toxicity) after ingesting three different medications that contained sucralose, and the study later determined the sucralose was causing the toxicity.  I do understand that this is certainly not reflective of the entire population, but there are segments of the population that will have a similar reaction.  It may very well be you!

GMO Watch

Because sucralose is so sweet by itself, it is mixed with either maltodextrin or dextrose in a ratio of 1% sucralose to 99% dilution powder.  Since both are maltodextrin and dextrose are derived from corn, and corn crops are over 90% genetically modified, chances are your sucralose sweetener is GMO.  Look for Sweet ‘N Low, Sweet Twin and Sugar TwinSplenda when weeding out sucralose products.

Cyclamate was banned in 1969 by the FDA because it showed cancer causing potential.

Do artificial sweeteners really help you lose weight?

Quite to the contrary, research has shown that artificial sweeteners may actually contribute to weight GAIN, nor are they always effective in reducing weight.

A trial study published in 2014 completed at the Weizmann Institute of Science in Rehovot, Israel may shed some light on this. This study indicated that consumption of moderate amounts of sucralose causes an imbalance in gut microbes that created metabolic changes normally associated with obesity and diabetes.  This means that there is a likelihood that replacing all of your sugar needs with artificial sweeteners may very well make it more likely for you to gain weight and develop type 2 diabetes.

At the 2009 meeting of the Endocrine Society, a conglomeration of research was compiled that showed that increased consumption of artificial sweeteners leads to obesity, increased insulin resistance and an increased likelihood of diabetes.  A thorough paper by Susan E. Swithers discusses the evidence that has accumulated that indicates the consumption of artificial sweeteners is linked to obesity, diabetes, metabolic syndrome and cardiovascular disease, and may interfere with learning processes.

Research into basic physiology also explains why this is the case.  It has been shown that sucrose plays a role in satiety by causing a response in the amygdala of the brain, and subsequent to this it has also been discovered that consuming artificial sweeteners decreases the response of the amygdala to sugar intake so we eat more [3][4].

What to do?

Avoid chemical artificial sweeteners.  If you have an intense craving for sugar, find a practitioner who can evaluate you for metabolic issues such as systemic candida, hormone imbalances, adrenal fatigue and intestinal dysbiosis.

 

 

1. Wei-na Cong, Rui Wang, Huan Cai, Caitlin M. Daimon, Morten Scheibye-Knudsen, Vilhelm A. Bohr, Rebecca Turkin, William H. Wood III, Kevin G. Becker, Ruin Moaddel, Stuart Maudsley, Bronwen Martin.  Long-Term Artificial Sweetener Acesulfame Potassium Treatment Alters Neurometabolic Functions in C57BL/6J Mice. August 7, 2013
2. Schiffman, Susan and Rother, Kristina. Sucralose, A Synthetic Organochlorine Sweetener: Overview of Biological Issues. Journal of Toxicology and Environmental Health B, Critical Reviews. 2013 Sep; 16(7): 399–451.
3. Rudenga, K.J. and Small, D.M. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite, Volume 58, Issue 2, April 2012, Pages 504–507.
4. Anderson, G Harvey and Woodend, Dianne. Consumption of sugars and the regulation of short-term satiety and food intake. American Journal of Clinical Nutrition, October 2003 Vol. 78, No. 4:843S-849S.

Leave a Reply

Your email address will not be published. Required fields are marked *